PAHO/CEPIS/PUB/03.89 Original: Spanish

WATER DISINFECTION

Felipe Solsona Regional Advisor on Water Quality CEPIS-PAHO/WHO

Juan Pablo Méndez

Consultant

Pan American Center for Sanitary Engineering and Environmental Sciences Pan American Health Organization Regional Office of the World Health Organization

2003

THE AUTHORS

FELIPE SOLSONA

Argentinean, Sanitary Engineer with a Master's Degree in Chemistry from the University of Buenos Aires, Argentina. He has worked extensively in the area of appropriate technology and basic sanitation, with emphasis on water treatment and water quality control.

He lived in the Argentinean Patagonia for 12 years, 5 years in Brazil and 5 years in Africa.

He has written roughly one hundred manuals, articles and documents.

At present, he is serving as the PAHO/CEPIS Regional Advisor on Water Quality at its headquarters in Lima, Peru.

JUAN PABLO MÉNDEZ VEGA

Peruvian, Sanitary Engineer with a degree from the National University of Engineering in Lima, Peru, and advanced studies at the Graduate School of Business Administration (ESAN). He collaborates with PAHO/CEPIS on matters of strategic planning for populations with low sanitary and environmental risks, sanitary education and project evaluation. He is experienced in the handling and management of urban solid waste. At present, he is working as a consultant for the Peruvian Government's sanitation sector on environmental and strategic planning aspects.

Photographs

The photographs included in this document were provided by:

Felipe Solsona, PAHO/CEPIS Lidia Vargas, PAHO/CEPIS UNATSABAR, PAHO/CEPIS ALLDOS International AG (Germany) TECNOLOGÍA DELTA SA de CV (Mexico) ZENON ENVIRONMENTAL INC (Canada)

© Pan American Center for Sanitary Engineering and Environmental Sciences, 2003

The Pan American Center for Sanitary Engineering and Environmental Sciences (PAHO/ CEPIS) reserves all rights to this publication. The contents of this document may be summarized, reproduced or translated, in full or in part, without prior authorization, provided that their source is specified and that they are not used for commercial purposes.

PAHO/CEPIS is a specialized agency of the Pan American Health Organization (PAHO/ OMS).

Los Pinos 259, Lima, Peru Post Office Box 4337, Lima 100, Peru Telephone : (511) 437-1077 Fax : (511) 437-8289 cepis@cepis.ops-oms.org http://www.cepis.ops-oms.org

PREFACE	v	3 = Chlorine	29
1 = Disinfection	1	Introduction	31
Introduction	3	Properties of the chlorine products	
Considerations regarding		and description of the method	33
disinfection	5	Chlorine disinfection mechanisms	38
Characteristics of the manual	11	Chlorine disinfection by-products	39
Information sources	13	Equipment	40
2 = Solar disinfection	15	Chlorine gas feeders	41
Introduction	17	Vacuum gas chlorinators	41
Properties of solar disinfection and		Pressurized gas chlorinators	42
description of the method	17	Pressurized chlorine gas feeding	
Solar disinfection mechanisms	18	equipment	47
Disinfection by-products	19	Float valve in a box system	48
Equipment	19	Floating tube with hole system	49
Solar heaters	19	Bottle/glass sytem	50
Solar stoves	21	Hypochlorite positive or negative	
Solar concentrators	22	pressure feeders	52
Solar stills	23	Diaphragm pump feeding system	53
Combined process of solar		Suction feeders (venturi-type)	56
preheating and distillation	24	On-site sodium chloride electrolysis	59
Disinfection in bottles and small		Solid calcium hypochlorite feeders	61
containers	24	Tablet and pill erosion feeder	62
Installation requirements	25	Advantages and disadvantages	
Operation and maintenance	26	of the methods	65
Monitoring	26	Monitoring of chlorine compounds	
Advantages and disadvantages of		and chlorine-based products	65
solar disinfection	27	Feeder and operation and	
Equipment and operating and		maintenance costs	68
maintenance costs	28	Information sources	70
Information sources	28		

TABLE OF CONTENTS

4 = Ultraviolet radiation	71	Equipment	105
Introduction	73	Installation and requirements	110
Properties of ultraviolet radiation	73	Monitoring	111
UV radiation disinfection		Advantages and disadvantages	113
mechanisms	75	Costs	114
UV radiation disinfection		Information sources	115
by-products	75	7 = Chlorine dioxide	117
Equipment	77	Introduction	119
Installation and requirements	80	Properties of chlorine dioxide as	
Operation and maintenance	81	a disinfectant and description of	
Monitoring	81	the method	119
Advantages and disadvantages	82	Chlorine dioxide disinfection	
Costs	83	mechanisms	121
Information sources	84	By-products of disinfection	100
5 = Slow filtration	85	with chlorine dioxide	122
Introduction	87	Equipment	122
Properties	87	Installation and requirements	125
Mechanisms	88	Operation and maintenance	127
Disinfection by-products	91	Monitoring	127
Equipment	91	Advantages and disadvantages	127
Installation requirements	94	Costs	128
Operaction and maintenance	96	Information sources	128
Monitoring and evaluation criteria	97	8 = Minifiltration	129
Advantages and disadvantages		Introduction	131
of slow filtration	98	Properties of disinfection by	
Equipment and operation and		minifiltration and description	101
maintenance costs	98	of the method	131
Information sources	99	Mechanisms of disinfection by	122
6 = Ozone	101	minifiltration	133
Introduction	103	By-products of disinfection by minifiltration	133
Properties of ozone as a disinfectant		Equipment	133
and description of the method	103	Installation and requirements	137
Ozone disinfection mechanisms	104	Operation and maintenance	139
Ozone disinfection by-products	105		

Table of contents

Monitoring	139	10 = Special and emergency	
Advantages and disadvantages	140	disinfection	167
Costs	140	Dug wells	169
Information sources	141	New tanks	171
9=Alternative disinfection methods	143	Cisterns and tankers	171
Introduction	145	New mains and pipes	173
Disinfection with bromine	146	Household tanks	173
Disinfection with silver	147	Disinfection of the water supply in	
Disinfection with iodine	151	emergency situations	177
Disinfection with sodium dichloroisocyanurate (NaDCC)	153	11 = Comparative data on disinfection techniques	181
Disinfection using mixed oxidant		Introduction	183
gases	155	Summary of the disinfection	
Disinfection by radiation	159	techniques	183
Synergic disinfection methods	160	Comparative tables of disinfection	100
Household filters	162	techniques	198
Information sources	164	Information sources	198

vi

PREFACE

The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) have been working together for several decades in the area of environmental health. A product of this longstanding and fruitful relationship has been the series of *Guidelines for drinking water quality* put out by WHO.

The joint efforts of USEPA and the Pan American Health Organization (PAHO), the WHO Regional Office for the Americas, have also yielded productive results in the regional sphere. In the aftermath of Hurricane Mitch, in Central America, agreements were signed to upgrade, set up and accredit laboratories; evaluate water treatment plants and improve sources; and offer training in sanitary inspection, source protection and the promotion of plans to improve the quality of water for human consumption.

In 2001, the project "Improvement of the quality of drinking water in Central America" was launched with USEPA support under the direct execution of the Pan American Center for Sanitary Engineering and Environmental Sciences, PAHO/ CEPIS. This project is broken down into six components that are being implemented in El Salvador, Honduras and Nicaragua: 1) Water quality surveillance and control programs; 2) Epidemiological studies linking health risks and waterborne diseases; 3) Water quality legislation and standards; 4) Analysis of the sanitary behavior of school children with regard to water quality; 5) Establishment of an electronic library and 6) Transfer of disinfection technologies and their implementation in the rural area.

The final component called for the preparation of a suitable tool to contribute to the desired transfer: a comprehensive manual that, while scientific, would also be realistic and attractive. What was sought was a document that would summarize the vast store of data available in similar works and present it didactically for the use of both engineers and technicians who seek concrete data and suggestions for implementing, operating and maintaining water disinfection systems in the treatment plants of medium-sized and small towns. The efforts of sanitary engineers Felipe Solsona, PAHO/CEPIS regional advisor on water quality, and Juan Pablo Méndez, sanitation consultant in Peru, have produced the desired document. The scope, initially confined to the subregion, has been broadened to allow for its implementation under different local conditions. It is with great satisfaction that we make this work available to experts and organizations that are dedicated to producing drinking water, in the assurance that it will help to improve the quality of life and health of rural dwellers in developing countries.

Eng. Sergio A. Caporali Director of CEPIS